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Abstract
An Al–Si solid-state phase diagram is studied using first-principles electronic
structure calculations of formation enthalpies and quasiharmonic vibrational
free energies. The harmonic vibrational entropy of formation of a Si impurity
in fcc Al is predicted to be �Svib = +2.6 kB per Si atom, resulting in more than
a ten-fold increase in the calculated solubility. Thermal expansion is found
to further increase the maximum solubility at T = 850 K by approximately
55%. Surprisingly, when vibrational effects are included, the widely used local-
density approximation (LDA) performs poorly in reproducing the experimental
solvus boundary, which is overestimated by a factor of ten. This failure is
attributed to the neglect of corrections to the calculated LDA impurity enthalpy
�H stemming from the inhomogeneity of the electronic charge density. These
corrections tend to favour the four-fold coordinated diamond structure over
the twelve-fold coordinated fcc solid-solution phase. The generalized-gradient
approximation (GGA) is found to remove most of the discrepancy between
the experimental and calculated �H , giving a good agreement with the
experimental Al–Si phase diagram.

1. Introduction

Ab initio prediction of alloy composition–temperature (c–T ) phase diagrams remains a central
goal for the development of first-principles methods in computational materials science
research. During recent years, many studies have demonstrated remarkable success in
ab initio calculations of c–T phase diagrams for a wide variety of metals, semiconductors
and ionic materials [1–5]. These studies are based upon a convenient parametrization of
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the configurational energy in terms of a generalized Ising model with pair and multibody
interactions [6]. Generally, first-principles calculated phase diagrams exhibit the correct
topology and sometimes even predict new, unsuspected ordered phases. Unfortunately, the
quantitative accuracy of ab initio calculated phase boundaries is usually well below the
requirements of most practical applications [7]. Recently, the accuracy of ab initio calculated
alloy free energies has been improved through the incorporation of non-configurational
contributions to excess entropies arising from, for example, electronic and vibrational
excitations [8–16]. This work has been motivated by recent measurements of large excess
entropies due to ionic vibrations [17–23], even when the structures of competing phases are
based upon a common underlying lattice framework.

The present study deals with the absolute accuracy that can be achieved in state-of-the-
art first-principles calculations of phase diagrams by including quasiharmonic vibrational
contributions to the free energies. We consider the technologically relevant Al–Si alloy
system, which has a well-studied c–T phase diagram [24] of the simple eutectic type with two
terminal solid-solution phases: fcc-based (Al) and diamond-structure (Si). The (Al) solid-
solution phase extends to roughly 1.6 at.% Si at T = 850 K [25, 26], while lattice parameter
measurements indicate that the solubility of Al in Si is negligibly small [27, 28]. The (Al)
and (Si) phase-fields are separated by a large two-phase region; intermediate compounds do
not exist. Due to the dilute nature of both solid-solution phases, the temperature-dependent
solubility limit cs(T ) of Si in fcc Al is given accurately by the following formula:

cs(T ) = exp

[−�G

kBT

]
, (1)

where �G is the excess free energy for a dilute Si atom in fcc Al, expressed per Si atom as:

�G = �H − T�Snc. (2)

�H is the enthalpy of formation per Si atom and �Snc is the non-configurational entropy,
including vibrational and electronic contributions, but excluding the ideal entropy of mixing,
Sconf = −kB[c ln c + (1 − c) ln(1 − c)]. Reference states for the formation quantities in
equation (2) are pure diamond Si and fcc Al. Using equation (2) one obtains that the solvus
boundary is given by:

cs(T ) = e�Snc/kB e−�H/kBT . (3)

If the temperature-dependence of �Snc and �H is small, as in the case of weakly anharmonic
crystals [29], the non-configurational entropy contributes a constant prefactor, e�Snc/kB ,
multiplying the ideal solubility, c0(T ) = e−�H0/kB T , where �H0 is the excess enthalpy
at T = 0 K. Equations (1)–(3) are valid whenever the interaction between impurities is
statistically negligible, a condition which is well satisfied for compositions below 1–2 at.%,
i.e. in the range relevant for the Al–Si phase diagram. Simplicity of the configurational
thermodynamics represented by equations (1)–(3) allows us to separate the effects of
impurity energetics from the effects of ionic vibrations on the phase boundaries in the Al–
Si system.

We find that in spite of its apparent simplicity, the Al–Si system presents a challenging test
case for first-principles methods. Theoretical calculations based upon the density functional
theory (DFT) [30] reveal a large vibrational contribution to the Gibbs free energy of a
Si impurity. The non-configurational entropy, �Snc, is found to be approximately 2.6 kB

per impurity atom. According to equation (3), this contribution significantly enhances the
calculated solubility limit on the Al-rich side of the phase diagram. Softening of the lattice
phonons around the Si impurity is found to be responsible for such a large effect. An analysis
of the experimental solubility data confirms this trend, revealing a significant entropy prefactor
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in equation (3). Unexpectedly, when the local-density approximation (LDA) to the electronic
exchange–correlation functional is used to obtain the formation enthalpies �H , the vibrational
entropy contribution is found to degrade the agreement between the experimentally determined
and theoretically calculated solvus boundaries. This failure is attributed to the inability of the
LDA to correctly capture total energy differences between competing phases. In particular, the
binding energy of a Si atom in the four-fold coordinated diamond structure is underestimated
relative to the binding energy of a Si impurity in the twelve-fold coordinated solid-solution
fcc phase. We suggest that the correct formation energy �H can be obtained only by taking
into account corrections to the LDA arising from charge inhomogeneity. For instance, we
demonstrate that the generalized gradient approximation of Perdew and Wang [31] increases
the calculated formation energy of a Si impurity by approximately +0.15 eV, removing the bulk
of the discrepancy between the calculated and measured solubilities. This improvement can be
attributed to the tendency of the GGA to favour the more inhomogeneous charge distribution
in the diamond structure relative to the metallic fcc-based solid solution phase. These findings
show that Al–Si represents an interesting example where both the vibrational free energies and
gradient corrections are needed to calculate an accurate phase diagram.

2. Methods

The free energy �G in equation (1) was calculated using first-principles density functional
theory [30]. The results were sensitive to the chosen exchange–correlation energy functional;
we present a comparison of the popular local-density approximation (LDA) parameterized
by Perdew and Zunger [32], with the generalized gradient approximation (GGA) developed
by Perdew and Wang [31]. The numerical accuracy of the calculated excess free energies
was verified using two different pseudopotential-based techniques. The first method was
based on standard norm-conserving pseudopotentials (NCPP), generated using the prescription
of Troullier and Martins [33]. Pseudopotentials were generated for valence electron
configurations 3s23p0.993d0.01 for Al and 3s23p1.93d0.1 for Si. Another set of calculations
was performed using the ultrasoft pseudopotential technique [34] and the Vienna Ab initio
Simulation Package (VASP), developed at the Institut für Material-physik of the Universität
Wien [35–38]. Both methods include corrections due to the non-linearity of the core–valence
exchange–correlation functional [39]. The electronic wavefunctions were expanded in plane
wave bases with cutoff energies Ecut = 326.5 and 100 eV for norm-conserving and ultrasoft
pseudopotentials, respectively. Electronic states were sampled on equivalent k point grids
containing 16 384 points in the full Brillouin zone of the fcc lattice and populated according
to a finite-temperature (T = 27 meV) Fermi–Dirac broadening scheme.

LDA phonon spectra were obtained using an implementation of the first-principles linear
response (LR) theory [40, 41] using the plane wave basis set and NCPP [42]. The linear
response method allows the calculation of the properties of phonons of a given wavelength
without resorting to expensive finite-difference frozen phonon calculations on large supercells.
Numerical convergence of the impurity free energies was ensured by using equivalent [43]
reciprocal space grids for both phonon and electron states. Dynamical matrices and phonon
states were calculated on regular grids of phonon wavevectors q (we used regular 3 × 3 × 3
and 2 × 2 × 2 meshes for 27-atom and 32-atom supercells, respectively). For diamond Si
electron and phonon states were both sampled on a 8 × 8 × 8 regular grid. Interatomic force
constants were extracted by applying the inverse Fourier transform to the directly calculated
dynamical matrices. Phonon mode Grüneisen parameters, γqn = − d ln ωqn

d ln V , were obtained from
finite differences by calculating phonon frequencies at two volumes separated by ≈3%.



2200 V Ozoliņš et al

Since our linear response code cannot handle gradient corrections, GGA phonon
calculations for Si impurities in Al were performed using the VASP code and the frozen
phonon method [44]. We studied k = 0 phonon states of 32-atom and 64-atom cubic impurity
supercells. To ensure maximum cancellation of numerical errors, the excess free energies of
Si impurities were obtained by subtracting the vibrational entropies of fcc Al calculated using
exactly the same cells and numerical parameters. For each cell, all symmetry inequivalent
rows of the q = 0 dynamical matrix were determined (there are 8 and 13 such rows for the
32-atom and 64-atom cells, respectively); the remaining rows were obtained using standard
symmetry-group transformations [45]. Individual elements Di j

αβ of the q = 0 dynamical
matrix are proportional to the force acting on the atom i along the Cartesian direction α if
the atom j is displaced by a small amount along the direction β, Fi

α = −√
Mi M j Di j

αβu j
β .

For each symmetry-inequivalent choice of u j
β , the forces Fi

α were obtained for a set of 11

evenly distributed displacements around the equilibrium position, from u j
β = −0.05 Å to

u j
β = +0.05 Å. The calculated Hellman–Feynman forces were fitted using third-order splines,

and the linear terms were used to extract Di j
αβ . The numerical accuracy of this method was

established by comparing the LDA phonon spectra of Si impurities with the results obtained
using the linear response method. The calculated phonon frequencies agreed to within a few
per cent (see section 3.1).

3. Results

3.1. LDA impurity free energies

We have calculated structural, elastic and vibrational properties of fcc Al, diamond Si and
several fcc-based impurity supercells: a cubic 32-atom cell (Al31Si), a 27-atom 3 × 3 × 3 cell
(Al26Si), and a 64-atom 4 × 4 × 4 cell (Al63Si). The results obtained using the LDA are given
in the upper part of table 1. The calculated T = 0 K formation enthalpies of a Si impurity in
fcc Al are �H0 = +0.309 eV using norm-conserving pseudopotentials and �H0 = +0.314 eV
using VASP and ultrasoft pseudopotentials. These numbers are in reasonable agreement with
the earlier values of �H0 = +0.37 and +0.38 eV obtained by Chetty et al [48] and Turner et al
[49], respectively. Slight differences in the calculated �H0 are probably caused by numerical
factors (plane wave energy cutoffs, number of k points, or supercell size), use of different
pseudopotentials (nonlinear core correction, pseudopotential core radii), or both. We have
checked that further increases of the cell size or of the number of k points lead to negligible
changes in the calculated �H0, therefore the values given in table 1 are numerically converged
for the present choice of pseudopotentials.

Neglecting all other free energy contributions, an impurity formation energy of �H0 =
+0.31 eV results in a calculated solubility of 1.4 at.% at T = 850 K, which is very close to the
experimental value of 1.6 at.% [50]. Such a close agreement seems to indicate that the LDA
performs very well in describing the solvus boundary in Al–Si. However, we will argue that
this result is fortuitous and that a proper treatment of vibrational effects destroys the apparent
accord between the LDA and the experimental solubility data. Indeed, as seen from table 1,
the vibrational entropy of a Si impurity is calculated to be �Svib = +1.8 kB per Si atom using
the 32-atom cell and �Svib = +2.3 kB per Si atom using the 64-atom cell. With these values
of �Snc, equation (3) predicts a six- to ten-fold increase in the calculated LDA solubility. We
conclude that accounting for vibrational entropy contributions in equation (1) reveals that the
LDA severely overestimates the solubility of Si in Al.

To ascertain that the above discrepancy is not caused by an error in the calculated
vibrational entropy of a Si impurity, we have performed an independent calculation of �Svib
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Table 1. Calculated equilibrium atomic volumes V0, bulk moduli B0, average Grüneisen
parameters γG, excess enthalpies �H , excess harmonic vibrational entropies �Svib, and high-
temperature coefficients of volume thermal expansion β = 1

V

(
∂V
∂T

)
p . The last column gives the

rate of increase in the excess vibrational entropy due to thermal expansion, d
dT �Svib. All excess

quantities are given per Si impurity. Numbers in parentheses represent experimental thermal
expansion data [46, 47].

V0 B0 β �V0 �H �Svib
d

dT �Svib

Composition (Å3) (GPa) B ′ γG (106 K−1) (Å3) (meV) (kB) (10−3 kB K−1)

LDA-NCPP linear response results

Al 15.63 83 4.3 2.03 66(69)
Al26Si 15.52 85 4.6 −6.6 +347 +2.2
Al31Si 15.55 85 4.5 2.09 65 −6.5 +313 +1.8 0.88
Al63Si 15.59 −6.2 +309
Si 19.53 96 4.2 0.55 12(12)

LDA-VASP frozen phonon results

Al 15.78 82 4.4
Al31Si 15.70 83 4.8 −6.4 +327 +1.9
Al63Si 15.74 83 4.3 −6.2 +314 +2.3
Si 19.60 95 4.1

GGA-VASP frozen phonon results

Al 16.55 73 4.4
Al31Si 16.48 73 4.5 −6.3 +468 +2.4
Al63Si 16.51 74 4.5 −6.3 +463 +2.6
Si 20.34 87 4.2

using the VASP code [35–38] and ultrasoft pseudopotentials [34] included in its standard
distribution. We calculated all q = 0 phonons in the 32-atom and 64-atom impurity cells
using the frozen phonon technique. For the 32-atom cell, we obtained an excess vibrational
entropy �Svib = +1.9 kB per Si atom (see table 1), which should be compared with +1.5 kB

found from the linear response calculation using only the zone-centre phonons in the 32-
atom impurity cell (the value �Svib = +1.8 kB quoted in table 1 is for a 2 × 2 × 2 mesh
of phonon wavevectors). Direct inspection showed that the calculated phonon frequencies
differed by only a few per cent. Considering the numerical uncertainties involved in taking a
difference of two large numbers to obtain a small formation entropy, this is a very good level
of agreement between two independent electronic-structure techniques. From the difference
in vibrational entropies between the 32-atom and 64-atom supercells (see table 1), we estimate
that the calculated vibrational entropy of the Si impurity is converged to better than 0.4 kB. The
uncertainty in �Svib due to cell size effects will affect the solubility cs(T ) by a relatively small
amount (<50%). Finally, we also checked that increasing the total number of electronic k
points in the full Brillouin zone from 16 384 to 55 296 had a negligible effect on the calculated
phonon frequencies.

Additional evidence pointing to the importance of non-configurational effects is revealed
by an analysis of the experimental data on Si solubility using equation (3). The most accurate
and consistent data set for a range of temperatures has been provided by Dix and Heath [25], who
used long annealing times and micrographic analyses to look for Si precipitates. It is thought
that their data represent thermodynamicequilibrium down to approximately 350 ◦C [51]. Their
results are shown as filled symbols in figure 1. Based upon equation (1), we have analysed
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Al-Si Phase Diagram
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Figure 1. Solvus boundary in the binary Al–Si system. Experimental data of Dix and Heath [25] are
shown as symbols. The solid line represents the first-principles calculated result using equation (3)
and the LDA values of enthalpy (�H = +0.31 eV) and vibrational entropy (�Snc = +2.3 kB). The
GGA result (�H = +0.46 eV and �Snc = +2.6 kB) is shown as a dash–dotted line. Also shown
are fits of the experimental solubility data assuming �Snc = 0 (dotted line) and �Snc �= 0 (dashed
line) in equation (3) (see section 3.1). Effects of thermal expansion have not been included in these
curves.

these data in two different ways. First, assuming that �Snc = 0, �H can be estimated from
a best fit to the experimental data points. This recipe yields �H = +315 meV/atom, and
predicts a solvus boundary that is in rather poor agreement with the experimental data at lower
temperatures, as shown by the dotted line in figure 1. In the second step, we vary both �Snc and
�H , which produces values �Snc = +2.7 kB and �H = +504 meV per Si atom. The resulting
fit is shown as a dashed line in figure 1, reproducing the experimental data points extremely well.
Incidentally, the latter enthalpy agrees with the value �H = +510 meV quoted by Hatch [50],
but is much larger than any of the LDA results quoted above. Furthermore, the extracted non-
configurational entropy is consistent with the results of our linear response calculations, which
find a large vibrational excess entropy. This analysis supports the conclusion that vibrational
effects lead to a significant enhancement of the Si solid solubility.

So far we have demonstrated that the LDA severely underestimates the impurity formation
enthalpy �H and overestimates the solubility of Si in Al by a factor of ten. Inclusion of the
vibrational entropy term is crucial for uncovering this failure of the LDA, since in the absence
of the exponential pre-factor exp[�Svib/kB] in equation (3), the predicted LDA solubility at
high temperatures would be in a very good agreement with the experimental data.

3.2. Harmonic phonons in Al–Si

Here we analyse physical effects contributing to the large excess vibrational entropy of a Si
impurity. Figure 2 shows the calculated phonon densities of states (DOS) of fcc Al, diamond Si
and a 32-atom Si impurity supercell. The latter DOS has been decomposed into contributions
from the Si impurity and from the surrounding near-neighbour shells of Al atoms:

gi(ω) = 1

M

∑
q

3Nat∑
n=1

|ei(qn)|2δ(ω − ωqn), (4)
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Figure 2. Calculated atom-projected phonon DOS around a Si impurity in Al (bottom panel),
compared with the phonon DOS of fcc Al and diamond-structure Si (top panel). The lower panel
shows LDA linear response results obtained using the 32-atom supercell.

where Nat is the number of atoms in the unit cell, M Nat is the total number of atoms in the
crystal, ωqn is the frequency of a phonon mode with a wavevector q and branch index n, and
ei (qn) is a normalized phonon eigenvector. Subscript i runs over all symmetry inequivalent
atom types.

Figure 2(b) shows that the Si impurity-projected partial DOS is centred around much
lower frequencies than the phonon DOS of diamond Si, which is represented by a dashed line
in figure 2(a). Around the Si impurity, there is an additional slight softening of the partial
phonon DOS for the nearest-neighbour (NN) shell of Al atoms. Noticeable changes are also
observed in the second-nearest neighbour shell of Al atoms (see figure 2). Our findings are
consistent with the experimental results of Chevrier et al [54, 55], who prepared supersaturated
Al–Si solid solutions using high-pressure quench techniques. They found a significant phonon
softening in the range of transverse-acoustic (TA) frequencies of Al and attributed this effect to
a Si-induced decrease in the lattice shear modulus. A theoretical investigation of Si vibrations
in fcc Al was performed by Caro et al [56] using an approximate first-principles scheme based
on a minimal basis set and the Harris functional. Our results are broadly consistent with
their conclusions, but there are important quantitative differences in the calculated phonon
frequencies and lattice relaxations, which are probably caused by their use of an approximate
scheme.

The total entropy of formation can be exactly partitioned into contributions �Svib(i)
associated with individual atoms [11]. Indeed, above one-third of the characteristic Debye
temperature (which is 428 K for Al and 645 K for Si [57]), the vibrational entropy is
proportional to the logarithmic moment of the phonon DOS [29], Svib ∝ − ∫

ln(ω)g(ω) dω.
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Figure 3. Atom-decomposed excess vibrational entropies �Svib(i) (top panel) and Grüneisen
parameters γ (i) (bottom panel). These results were obtained using the 32-atom supercell and LDA
linear response method.

Using equation (4) to express the total g(ω) and subtracting the vibrational entropy of the
pure constituents, gives the desired atomic decomposition. Application of this procedure to
the partial DOS curves in figure 2 yields the values of �Svib(i) shown in figure 3(a). It is
found that most of the total entropy of formation (1.8 kB out of 2.2 kB) can be attributed to
the Si impurity atom. There is an appreciable contribution to the formation entropy from the
nearest-neighbour Al shell (12 × 0.026 = 0.31 kB); the effect of farther Al neighbours is
insignificant. This suggests that most of the vibrational entropy contribution to the impurity
�Snc is due to the relative softness of Al–Si bonds in comparison with Al–Al and Si–Si bonds
in the pure constituents.

This conjecture is supported by the data in table 2, which gives the calculated nearest-
neighbour bond lengths and longitudinal force constants in pure fcc Al, in diamond Si, and
in the 32-atom Si impurity supercell. The longitudinal force constant �l(i j) is defined as the
largest negative eigenvalue of the 3 × 3 force constant matrix �αβ(i j) between atoms i and j .
For nearest neighbours, the largest eigenvalue always corresponds to an eigenvector connecting
both sites, in accordance with the intuitive concept of longitudinal bond stiffness. As seen from
table 2, the Al–Si force constant is found to be −0.92 eV Å−2, softer than either the Al–Al
force constant −1.36 eV Å−2 or the Si–Si force constant −7.93 eV Å−2. As expected from
intuitive properties of the covalent bonding in the diamond structure, the Si–Si bond exhibits
the strongest longitudinal force constant. Another important property of interatomic forces,
apparent from table 2, is a 13% increase in the Al–Al force constant between two Al atoms
that share the Si impurity as one of their nearest neighbours. This increase occurs due to
symmetry-imposed shortening of the Al–Al bond length in the vicinity of an impurity. Indeed,
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Table 2. Comparison of bond lengths d (in Å), longitudinal force constants �l (in eV Å−2) and
their rate of decrease upon lattice expansion, a

�l

d�l
da , in Al–Si alloys. �l are defined as the largest

(by absolute value) eigenvalue of the corresponding nearest-neighbour force constant matrix. All
results are obtained using the LDA, NCPP and the linear response method.

Property Pair fcc Al Diamond Si Si impurity

Al–Si 2.786
Bond length d Al–Al 2.803 2.786a

Si–Si 2.332
NN force Al–Si −0.92
constant �l Al–Al −1.36 −1.54a

Si–Si −7.93
Grüneisen Al–Si −14.6

parameter a
�l

d�l
da Al–Al −10.6 −10.6a

Si–Si −9.4

a These Al atoms share a nearest-neighbour Si impurity.

simple geometric considerations show that the bond length between two NN Al atoms around
an impurity atom must be the same as the bond length between Al and the impurity atom
(see table 2). Since d (Al–Si) is smaller than d (Al–Al) in FCC Al, the corresponding force
constant is stiffer. Recently, a model that relates the bond stiffness to the bond length has been
proposed [10, 15, 16]. It suggests that, for a given pair of atoms, the relationship between �l

and d is largely independent of the local environment and alloy composition. Our results for
Al–Al force constants around the Si impurity are consistent with this idea.

We have shown that Si-induced lattice softening in the (Al) phase does not propagate
much beyond the nearest-neighbour shell of Al atoms. It is interesting to note that a previous
study of the Al–Sc system [11] found that a transition metal Sc impurity introduces a much
more extensive elastic softening of the crystal lattice of fcc Al. The larger effect was attributed
to a sizeable charge transfer to the Sc impurity and the surrounding complex of twelve NN
Al atoms. Electronic Friedel oscillations and elastic effects due to size mismatch between Sc
and Al were shown to combine, significantly softening Al–Al bonds up to the fourth-nearest
neighbour shell. Neither charge transfer nor size mismatch are expected to be of comparable
importance in the Al–Si system, which explains why force-constant perturbation is effectively
contained within the nearest-neighbour shell.

3.3. Anharmonic effects and thermal expansion

Two important consequences of anharmonic lattice vibrations are thermal expansion and the
associated phonon softening; both effects contribute to the free energies of alloy phases.
Nevertheless, their influence upon the calculated alloy phase diagrams is generally thought to
be small [9–11]. It is not immediately clear if this conclusion will hold for the Al–Si system,
where thermal expansion properties of (Al) and (Si) solid-solution phases are very different.
Indeed, consider the behaviour of phonon mode Grüneisen parameters, γn(q) = d ln ωn(q)

d ln V ,
in pure Al and Si. In fcc Al (and other ‘normal’ solids), the Grüneisen parameter is
positive, indicating that phonon frequencies, and thus the vibrational free energy, decrease
with expanding volume. In contrast, Si has several transverse-acoustic phonon modes with
negative Grüneisen parameters [52, 53]; it is one of the relatively few solids that is predicted
to exhibit negative thermal expansion at low temperatures. Even though at high temperatures
Si has a ‘normal’ positive coefficient of volume expansion, β, it is still an order of magnitude
smaller than that of Al. A large disparity in the values of β for (Al) and (Si) phases indicates
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that the quasiharmonic free energy difference may be strongly temperature-dependent, which
in turn may influence the solvus boundary.

Phonon mode Grüneisen parameters have been evaluated for fcc Al, for diamond-structure
Si, and for the 32-atom Si impurity cell using the linear response finite-difference method (see
section 2). Effects of thermal expansion on the calculated phase diagram can be described
using a thermodynamic Grüneisen parameter γG(T ), representing a weighted average over all
phonon modes:

γG(T ) = 1

MCV (T )

∑
q

3Nat∑
n=1

γqnC

(
h̄ωqn

kBT

)
, (5)

where C(x) = kBx2/[4 sinh2(x/2)] is the well-known phonon mode heat capacity function,

and CV (T ) = 1
M

∑
qn C

(
h̄ωqn

kB T

)
is the total fixed-volume heat capacity. At high temperatures,

the heat capacity of phonons tends to a constant, limx→∞ C(x) = kB, and the thermodynamic
Grüneisen parameter becomes a simple average over all phonon modes, γG = 1

M Nat

∑
qn γqn.

The calculated values of γG are given in table 1.
The rate of vibrational entropy increase due to thermal expansion at zero pressure is given

by (
∂S

∂T

)
p=0

=
(

∂S

∂V

)
T

(
∂V

∂T

)
p=0

= βγGCV = (CV γG)2

V0 B0
, (6)

where V0 and B0 are the equilibrium T = 0 K volume and bulk modulus, respectively. In
deriving equation (6), we have used a well-known expression for the coefficient of volume
thermal expansion in cubic materials: β = CV γG/(V0 B0) [29]. Using the equilibrium
lattice parameters, bulk moduli and Grüneisen coefficients from table 1, we obtain that at
high temperatures the formation entropy �Svib increases at a rate of 0.88 kB per 1000 K.
This is a substantial effect, which at T = 850 K contributes more than 30% to the
calculated vibrational entropy of formation. However, its effect on the free energy is partly
compensated by a simultaneous increase in the internal energy �H . Indeed, assuming a
linear volume expansion V = V0(1 + βT ), we find that the internal energy will increase
by δE = B0

2V0
(V − V0)

2 = (CV γG)2

2V0 B0
T 2. Adding the change in the entropy term given by

equation (6), −T �S = −T 2 ∂S
∂T , we find that the total free energy decrease due to thermal

expansion is δGvib = − (CV γGT )2

2V0 B0
, i.e. it is exactly one half of the change due to increase in

the entropy. Using the derived δGvib in equation (1), one finds that thermal expansion adds a
multiplicative factor to the solubility cs(T ), which increases exponentially with temperature:

fs(T ) = exp

[
(CV γG)2

2kBV0 B0
T

]
. (7)

The corresponding increase in the solubility of Si in Al is calculated to be 55% at T = 850 K.
This is a relatively insignificant amount in comparison with the approximately ten-fold
enhancement due to the harmonic vibrational entropy.

In the preceding discussion, we made two implicit physical assumptions. Firstly, we
neglected the temperature dependence of β, CV and γG in the derivation of equation (7); our
numerical estimates used their high-temperature limiting values. Obviously, this assumption
is not valid below the Debye temperature where quantum effects are important and β, CV

and γG are all T -dependent. However, this temperature region is usually quite narrow and
can be neglected for our purposes. Secondly, equation (6) may become inaccurate near
the melting point, where anharmonic finite phonon lifetime effects become important and
the quasiharmonic approximation starts to break down. Thirdly, the simple regular-solution
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formula (1) is valid only for compositions below 1–2 at.%. Thermal expansion contributions
to �G increase linearly with temperature and thus become appreciable only at temperatures
where the solubility is high enough that impurity–impurity interactions may invalidate the
basic premise of the regular solution model.

It is conceptually useful to partition γG into contributions associated with individual atoms.
This partitioning is done in a manner that is analogous to the definition of the partial phonon
DOS in equation (4):

γ (i) = Nat

MCV (T )

∑
q

3Nat∑
n=1

|ei(qn)|2 γqn C

(
h̄ωqn

kBT

)
. (8)

It is obvious that an average of γ (i) over all atoms gives the thermodynamic Grüneisen
parameter, γG = 1

Nat

∑Nat
i=1 γ (i). Figure 3(b) shows the calculated partial Grüneisen parameters

γ (i) for a 32-atom Si impurity cell. It shows that the Si atom has a significantly above-average
Grüneisen parameter γ (Si) = 2.5. Furthermore, Al atoms in the nearest-neighbour shell also
exhibit γ (i) that is slightly higher than that of ideal fcc Al (the latter is shown as a dashed line in
figure 3(b)). These properties indicate that not only is the Al–Si bond rather soft, but that it also
softens more than Al–Al bonds upon increasing volume. This proposition is further supported
by the data in table 2, showing the relative change in the nearest-neighbour force constants
with the lattice parameter, d ln �l

d ln a . Indeed, the Al–Si longitudinal force constant softens upon
increasing volume faster than either of the Al–Al or Si–Si force constants. Thus, Si impurities
increase the thermal expansion of the (Al) phase. A similar conclusion was reached in a first-
principles study of the vibrational entropy in Cu–Au [9], which found that thermal expansion
was higher in phases with overall softer phonon frequencies, e.g. the disordered alloy had
both a higher entropy and a larger Grüneisen parameter. In contrast, the Al–Sc system seems
to exhibit the opposite effect since the thermal expansion was found to slightly decrease the
solubility of Sc in Al [11].

3.4. GGA impurity free energies

To assess the importance of corrections to the LDA, we have used the generalized gradient
approximation (GGA) of Perdew and Wang [31] to recalculate the excess enthalpy �H and
entropy �Svib. We found that the GGA removes most of the discrepancy between the calculated
and measured solubilities by substantially increasing the formation energy of a Si impurity.
The data in table 1 shows that the GGA predicts a formation enthalpy �H = +467 meV per
Si atom, which is close to the value of +504 meV per Si atom obtained from the analysis of
experimental data of Dix and Heath [25] in section 3.1.

We have also recalculated the effect of the GGA on the vibrational entropy of a Si impurity.
Since our linear response code is not programmed for the GGA, we have used VASP frozen
phonon calculations to obtain all q = 0 phonons in the 32- and 64-atom supercells. The
calculated entropies of formation are �Svib = +2.4 and +2.6 kB per Si atom using the 32- and
64-atom cells, respectively. These entropies are slightly higher than the corresponding LDA
frozen-phonon values of +1.9 and +2.3 kB (see table 1). Increase in �Svib is most likely
caused by a slight lattice expansion of fcc Al when using the GGA. Indeed, in section 3.3 we
showed that the Al–Si bond softens faster than either of the Al–Al or Si–Si bonds; therefore,
the excess entropy of a Si impurity increases with the equilibrium volume of the (Al) phase.
More quantitatively, we can use the thermal expansion data in table 1 to obtain an estimate of
the magnitude of this effect. Using the relation

(
∂S
∂V

)
T

�V = �V γGCV /V0, we get that, for
the 32-atom cell, �Svib should increase by 0.5 kB if the equilibrium volume is expanded by
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5%, corresponding to the GGA/LDA volume effect. This estimate is surprisingly (and perhaps
a little fortuitously) consistent with the directly calculated change from +1.9 to +2.4 kB.

Our findings for the change in �H and �Svib are in line with the GGA results for Al and
Si obtained by other authors. Firstly, it is well-known that gradient corrections tend to favour
charge inhomogeneities and thus lower the energy of systems with inhomogeneous charge
distribution [58]. This observation is confirmed by our calculated excess formation enthalpies,
which are found to increase when going from the LDA to the GGA. Indeed, the charge
distribution around a Si impurity in Al is much more homogeneous than the charge distribution
in directionally bonded diamond Si, causing the GGA to favour the latter. Secondly, it is known
that the LDA consistently predicts cohesive energies that are too high [59]. In contrast, the
GGA generally provides cohesive energies that are much closer to the experimental values than
those predicted by the LDA [60]. It is understood that this is also a consequence of the gradient
corrections favouring the atom over the solid due to larger charge inhomogeneity in the latter.
Furthermore, the GGA predicts lattice parameters that are almost always larger than the LDA
values, and in many cases they are found to improve the agreement with the experiment [61–
63]. For instance, the GGA lattice parameter of Al is found to be 4.045 Å, which is in excellent
agreement with the experimental value of 4.05 Å. However, for diamond Si the GGA predicts
an equilibrium lattice constant that is approximately 1% larger than the experimental value
(5.48 versus 5.43 Å). These relatively small corrections to the equilibrium lattice parameters
are expected to have negligible effects on the calculated formation energies, but their effect
on vibrational properties is usually more important, since the phonon frequencies are quite
sensitive to the equilibrium lattice parameter [64]. Thirdly, some studies have shown that
the structural energy differences between different phases of Si are affected by the gradient
corrections. In the case of the diamond → β-tin transition, the GGA was found to increase
the transition pressure from 72 kbar (LDA) to 135 kbar [65], indicating that the gradient
corrections favour the four-fold coordinated covalent diamond structure over the six-fold
coordinated metallic β-tin structure. Again, this prediction of the GGA can be explained
by a more inhomogeneous charge distribution in the diamond structure. It is also qualitatively
consistent with our observation of increase in the formation energy of a Si impurity when going
from the LDA to GGA.

Using the 64-atom GGA value of the vibrational entropy, �Svib = +2.6 kB/atom, we
obtain that at T = 850 K the solubility is 2.3 at.%. The calculated solvus boundary is shown
as a dash–dotted line in figure 1. As discussed in the previous section, thermal expansion is
expected to increase this value by approximately 55%. A significant portion of the remaining
discrepancy can be attributed to a remaining 7% error in the calculated enthalpy. Indeed,
the value �Snc = +2.7 kB per Si atom, extracted from the analysis of experimental data in
section 3.1, is very close to the GGA value of �Svib. However, corrections to the ideal-
solution formula (1) could also alter the precise value of solubility. These corrections are
not straightforward to evaluate as they require the knowledge of Si–Si interactions in the (Al)
solid solution phase. The important conclusion is that the inclusion of vibrational entropy
dramatically increases the calculated solubility and brings the GGA results in good agreement
with experimental measurements.

4. Discussion and summary

Zener [66] was the first to suggest that vibrational entropy may have significant effects on
the calculated alloy phase boundaries. He analysed the available solubility data for several
Al-based alloys (including Al–Si) and, assuming that the enthalpy and entropy are independent
of temperature, extracted �Snc from an Arrhenius plot of ln cs(T ) versus 1/T . Large values
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of �Snc were found in all cases. Our work confirms Zener’s analysis and provides detailed
physical insights into the microscopic causes for large vibrational entropy effects in Al–Si. We
have demonstrated that vibrational contributions to the Gibbs free energy have a large effect
on the solvus boundary in the Al–Si system. Using a wide variety of numerical methods and
exchange–correlation functionals, in all cases the calculated vibrational entropy of formation
of a Si impurity in fcc Al is found to be more than +2 kB per Si atom, which leads to a roughly
ten-fold increase in the solubility. This effect has been shown to originate from the much
weaker bonding of Si atom in the solid solution (Al) phase than in the covalently bonded
diamond Si structure. Thermal expansion effects are found to contribute a 55% increase in
solubility at T = 850 K, which is relatively insignificant. Surprisingly, the widely used local-
density approximation is shown to do a poor job of predicting the energy differences between
the covalent and metallic bonding environments in the diamond-structure (Si) and fcc-based
(Al) phases, respectively. The LDA underestimates the formation enthalpy of a Si impurity
by approximately 0.2 eV, which leads to a very poor agreement between the calculated solvus
and experimental data. This failure has been attributed to the neglect of charge inhomogeneity
terms in the LDA exchange–correlation energy. The generalized gradient approximation of
Perdew and Wang [31] does a much better job of describing the formation enthalpy, predicting
a value of �H = +0.467 eV, which is in good agreement with the value �H = +0.504 eV
extracted from the experimental solubility data. The success of the GGA is attributed to its
tendency to favour charge inhomogeneities, decreasing the energy of the diamond (Si) phase
relative to the solid-solution (Al) phase and thus increasing the impurity formation energy.
Using the GGA, we obtain a solvus boundary that is in good agreement with the experimental
data, while the LDA enthalpies are found to severely overestimate Si solubility in (Al).
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[9] Ozoliņš V, Wolverton C and Zunger A 1998 Phys. Rev. B 58 R5897

[10] van de Walle A and Ceder G 2000 Phys. Rev. B 61 5972
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